37 research outputs found

    Realistic texture synthesis for point-based fruitage phenotype.

    Get PDF
    Although current 3D scanner technology can acquire textural images from a point model, visible seams in the image, inconvenient data acquisition and occupancy of a large space during use are points of concern for outdoor fruit models. In this paper, an SPSDW (simplification and perception based subdivision followed by down-sampling weighted average) method is proposed to balance memory usage and texture synthesis quality using a crop fruit, such as apples, as a research subject for a point-based fruit model. First, the quadtree method is improved to make splitting more efficient, and a reasonable texton descriptor is defined to promote query efficiency. Then, the color perception feature is extracted from the image for all pixels. Next, an advanced sub-division scheme and down-sampling strategy are designed to optimize memory space. Finally, a weighted oversampling method is proposed for high-quality texture mixing. This experiment demonstrates that the SPSDW method preserves the mixed texture more realistically and smoothly and preserves color memory up to 94%, 84.7% and 85.7% better than the two-dimesional processing, truncating scalar quantitative and color vision model methods, respectively

    Digital relief generation from 3D models

    Get PDF
    It is difficult to extend image-based relief generation to high-relief generation, as the images contain insufficient height information. To generate reliefs from three-dimensional (3D) models, it is necessary to extract the height fields from the model, but this can only generate bas-reliefs. To overcome this problem, an efficient method is proposed to generate bas-reliefs and high-reliefs directly from 3D meshes. To produce relief features that are visually appropriate, the 3D meshes are first scaled. 3D unsharp masking is used to enhance the visual features in the 3D mesh, and average smoothing and Laplacian smoothing are implemented to achieve better smoothing results. A nonlinear variable scaling scheme is then employed to generate the final bas-reliefs and high-reliefs. Using the proposed method, relief models can be generated from arbitrary viewing positions with different gestures and combinations of multiple 3D models. The generated relief models can be printed by 3D printers. The proposed method provides a means of generating both high-reliefs and bas-reliefs in an efficient and effective way under the appropriate scaling factors

    A self-adaptive segmentation method for a point cloud

    Get PDF
    The segmentation of a point cloud is one of the key technologies for three-dimensional reconstruction, and the segmentation from three-dimensional views can facilitate reverse engineering. In this paper, we propose a self-adaptive segmentation algorithm, which can address challenges related to the region-growing algorithm, such as inconsistent or excessive segmentation. Our algorithm consists of two main steps: automatic selection of seed points according to extracted features and segmentation of the points using an improved region-growing algorithm. The benefits of our approach are the ability to select seed points without user intervention and the reduction of the influence of noise. We demonstrate the robustness and effectiveness of our algorithm on different point cloud models and the results show that the segmentation accuracy rate achieves 96%

    WSN image acquisition method based on interleaving extraction and block compressed sensing

    No full text
    Abstract Aiming at disadvantages of current wireless sensor network in the aspect of image acquisition, this thesis proposes a WSN image acquisition method based on Interleaving Extraction and Block Compressed Sensing (IE-BCS). The method uses interleaving extraction to divide an original image into several sub-images at an encoding terminal, then compressive sampling and encoding for each sub-image by means of observation matrix weighted BCS and transmits data to a decoding terminal by their own independent channels. Next, the decoding terminal chooses corresponding decoders according to reception situations and reconstructs the original images by solving sparse optimization problems. Experimental results show that the method can save hardware resources effectively and improve robustness of image transmission

    Tomato Young Fruits Detection Method under Near Color Background Based on Improved Faster R-CNN with Attention Mechanism

    No full text
    The information of tomato young fruits acquisition has an important impact on monitoring fruit growth, early control of pests and diseases and yield estimation. It is of great significance for timely removing young fruits with abnormal growth status, improving the fruits quality, and maintaining high and stable yields. Tomato young fruits are similar in color to the stems and leaves, and there are interference factors, such as fruits overlap, stems and leaves occlusion, and light influence. In order to improve the detection accuracy and efficiency of tomato young fruits, this paper proposes a method for detecting tomato young fruits with near color background based on improved Faster R-CNN with an attention mechanism. First, ResNet50 is used as the feature extraction backbone, and the feature map extracted is optimized through Convolutional Block Attention Module (CBAM). Then, Feature Pyramid Network (FPN) is used to integrate high-level semantic features into low-level detailed features to enhance the model sensitivity of scale. Finally, Soft Non-Maximum Suppression (Soft-NMS) is used to reduce the missed detection rate of overlapping fruits. The results show that the mean Average Precision (mAP) of the proposed method reaches 98.46%, and the average detection time per image is only 0.084 s, which can achieve the real-time and accurate detection of tomato young fruits. The research shows that the method in this paper can efficiently identify tomato young fruits, and provides a better solution for the detection of fruits with near color background

    A Machine Vision-Based Method for Monitoring Scene-Interactive Behaviors of Dairy Calf

    No full text
    Requirements for animal and dairy products are increasing gradually in emerging economic bodies. However, it is critical and challenging to maintain the health and welfare of the increasing population of dairy cattle, especially the dairy calf (up to 20% mortality in China). Animal behaviors reflect considerable information and are used to estimate animal health and welfare. In recent years, machine vision-based methods have been applied to monitor animal behaviors worldwide. Collected image or video information containing animal behaviors can be analyzed with computer languages to estimate animal welfare or health indicators. In this proposed study, a new deep learning method (i.e., an integration of background-subtraction and inter-frame difference) was developed for automatically recognizing dairy calf scene-interactive behaviors (e.g., entering or leaving the resting area, and stationary and turning behaviors in the inlet and outlet area of the resting area) based on computer vision-based technology. Results show that the recognition success rates for the calf’s science-interactive behaviors of pen entering, pen leaving, staying (standing or laying static behavior), and turning were 94.38%, 92.86%, 96.85%, and 93.51%, respectively. The recognition success rates for feeding and drinking were 79.69% and 81.73%, respectively. This newly developed method provides a basis for inventing evaluation tools to monitor calves’ health and welfare on dairy farms

    Early Visual Detection of Wheat Stripe Rust Using Visible/Near-Infrared Hyperspectral Imaging

    No full text
    Wheat stripe rust is one of the most important and devastating diseases in wheat production. In order to detect wheat stripe rust at an early stage, a visual detection method based on hyperspectral imaging is proposed in this paper. Hyperspectral images of wheat leaves infected by stripe rust for 15 consecutive days were collected, and their corresponding chlorophyll content (SPAD value) were measured using a handheld SPAD-502 chlorophyll meter. The spectral reflectance of the samples were then extracted from the hyperspectral images, using image segmentation based on a leaf mask. The effective wavebands were selected by the loadings of principal component analysis (PCA-loadings) and the successive projections algorithm (SPA). Next, the regression model of the SPAD values in wheat leaves was established, based on the back propagation neural network (BPNN), using the full spectra and the selected effective wavelengths as inputs, respectively. The results showed that the PCA-loadings⁻BPNN model had the best performance, which modeling accuracy (RC2) and validation accuracy (RP2) were 0.921 and 0.918, respectively, and the RPD was 3.363. The number of effective wavelengths extracted by this model accounted for only 3.12% of the total number of wavelengths, thus simplifying the models and improving the rate of operation greatly. Finally, the optimal models were used to estimate the SPAD of each pixel within the wheat leaf images, to generate spatial distribution maps of chlorophyll content. The visualized distribution map showed that wheat leaves infected by stripe rust could be identified six days after inoculation, and at least three days before the appearance of visible symptoms, which provides a new method for the early detection of wheat stripe rust

    Assessing the Response of Satellite Solar-Induced Chlorophyll Fluorescence and NDVI to Impacts of Heat Waves on Winter Wheat in the North China Plain

    No full text
    Global warming has increased the chance of concurrent extreme climate events (weather or climate events that are rare within their statistical reference distributions in a particular place, such as heat waves, floods, and droughts). Crops grow best within specific temperature intervals, and excessive heat is detrimental to the physiological processes of crops and eventually affects yield levels. Analysing historical changes in concurrent extreme high temperatures is critical to preparing for and mitigating the negative effects of climatic change. The North China Plain (NCP) is the most important wheat production area in China. In this study, the spatiotemporal variations in temperature and heat wave trends in the NCP were analysed. Furthermore, we examined the potential of solar-induced chlorophyll fluorescence (SIF) to capture the influence of heat wave impacts on wheat crops in the NCP by comparing satellite remote sensing data of SIF and normalized difference vegetation index (NDVI) and validated ground-based yield data. The results indicate that temperatures and the number of heat wave days in the study region all show increasing trends, especially daily minimum temperature, which has increased by 0.38°C per decade for the past 30 years. Spatially, the southern NCP has suffered greater increasing-temperature trends and more heat wave days than the northern region. Regarding the response of SIF and NDVI to heat waves, SIF can better capture wheat yield decline due to heat waves compared to NDVI; thus, the SIF result indicated more sensitivity to heat waves compared to NDVI
    corecore